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Allylic amines are found in some natural products and are of Table 1. Examples of Titanium-Mediated Amine Allylation

2:1. 9 Estimated GC/FID yield. Chromatography did not completely separate
product from starting aminé.Ratio of cis:itrans 1:5. f Yields for protio.

great synthetic utility-Methods for the selective synthesis of various Ti(NMey); + alcohol 3?‘: aming 20 | product
. . o N
allylic amines are generally marked with several challenges, among ?Bléj"‘;
which are preventing overalkylation if a secondary amine is s -
desirable and I of the regioselectivity of the allylic substi GC Usolated)
eszlra e and control 0 t e regiose ectlv_ltyo the allylic substitu- amine alcohol product vield
ent? A method for the direct use o_f allylic glcohols, perhaps the PhNH, _~_OH /\/H\ 78 (51)
most abundant source of commercially available allylic groups, as Z g Ph
the allylating agent is preferable. Here, we describe an initial study 2  Ph,CHNH, A~Necripn, 72 (50)
on the use of comme_rmally ayallable T|_(NMe as the mediator _ CyNH, /\/n\c y 63 (30)
for selective conversion of primary amines to secondary allylic N
amines, potential mechanisms, and a remarkable increase in scope 4 PhNH, /XO” W/\/N\Ph (74)
for the reaction. "
The design for the synthesis is shown in SchemrAdINMe,), 5  Ph,CHNH, Y\/Nmphz (72)
has been used for in situ generation of titanium imido complexes H
for the hydroamination of alkynes and alkedem this work, 6 CyNH, W/\/N@sHﬂ (69)
primary amine is added to in situ generated Ti(NME@®R) to "
access an imido alkoxide. Three diverse amines were chosen to 7 PhNH, T -OH /\er:h 573D
explore the reaction scope: aniline, cyclohexylamine, and benzhy- PhNH A~ OH H 20)°
drylamine® These amines were reacted with methyl- and phenyl- 2 /ﬁ/ > Nepp 80)
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Lack of reactivity was noted with some allylic alcohols under y
these conditions (Chart 1). Noreactivity was seen with@AeCHCH,- 12 Ph,CHNH, Ph LL(\/MCHPhZ 68 (54)
OH and any of the amines employed, which is readily explained on oh
by steric considerations. More puzzling was the lack of reactivity 13 PhNH, A _on )\/H\Ph 40 (31)
with 2-methylallyl alcohol. Adding a methyl group to this position P
should not inhibit a [3,3]-sigmatropic rearrangement (Scheme 1). 14~ CyNH. AN, 58 (45)
H
Scheme 1. Conceptual Scheme for the Use of Allylic Alcohols in 15 PhNH, Ph A~ OH /\r'*ph 37 (20)
the Allylation of Primary Amines. Other Ligands on Titanium Not Ph
Shown DH HD m !
R 16 CyNH, Ao Ny 63 (35)
— =~ H/D
X OH c,) HoNR I \> .
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2 + 2]-cycloaddition__.---""" ’ [3,3]-sigmatropic

. rearrangement Scheme 2. Reaction with Deuterated Allyl Alcohol
AN -
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Rearrangement of imido allylic alkoxides has been studied as a pathway (Scheme 1), which appears to have received little attention
possible step of the SOHIO process for acrylonitrile synth&$is.  in the literature. There is ample precedent for the inhibition of [2
The mechanism proposed for these processes is a [3,3]-sigmatropict 2]-cycloadditions on olefin substitutidfi and this pathway offers
rearrangement to generate the allylic amido and a terminal oxo. In an explanation for 2-methylallyl alcohol inactivity.
academit! and industridP allylic alcohol rearrangements, a similar Unlike a methyl group in the 2-position, 2-phenylallyl alcohol
mechanism is postulatéd. Inhibition by methylation of the did show activity with some amines (entries 13 and 14, Table 1).
2-position of allyl alcohol brought this mechanism into question This increased activity with phenyl suggests that the inhibition by
for this titanium system. An alternative is a {2 2]/retro-[2 + 2] a 2-methyl group has an electronic component. On formation of
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Chart 1. Olefin-Substituted Allylic Alcohols with Olefin Substitution
Patterns that Inhibited Reactions

Supporting Information Available: Synthetic details and char-
acterization data for products. This material is available free of charge
via the Internet at http://pubs.acs.org.
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the Ti—C bond in the bicyclic intermediate (Scheme 1), a partial
negative charge will be present at the 2-carbon of the allyl. Addition
of a phenyl group should resonance stabilize this charge.

An attempted reaction with homoallylic alcohol and cyclohexyl-
amine shows that this substrate also transfers the alkyl gfoup!
Interestingly, the olefinic amine is not the final product. A
cyclization occurs with the apparent insertion of the olefin into the
methine hydrogen of the cyclohexyl group. The final product is
the spiro compound shown in Table 1.

The 1-aza-spiro[5.5]undecane core is found in several natural
products, such as histrionicotoXifi The parent spiro compound
has been synthesized previously in six steps@¥ overall yield!”

For a deuterium labeling experiment, the homoallylic alcohol
with two deuteriums on the hydroxyl-bearing carbon was synthe-
sized!® Contrary to allyl, the carbon bearing the label ends the
reaction attached to nitrogen in the spiro product (Table 1).

The labeling experiment suggests a new mechanism for the
nitrogen alkylation step. The-€N bond forming step may involve
migration of the alkyl from the alkoxide to an imido or amido ligand
(Scheme 3). The alkyl transfer step is unusual but reminiscent of
the four-center mechanism found in reaction of zirconium alkyls
with Br,.1° In addition, the mechanism proposed here is similar to
that observed in Re oxo hydroxides by Mayer and co-workers,
where hydrogen transfer occurs in a unimolecular migratidrne
exact mechanism is still under investigation.

The chemistry illustrated provides a simple, effective route to
selectively produce secondary allylic amines in a regioselective
manner. The starting materials are readily available alkenyl alcohols,
allylic or homoallylic. Currently, we favor the [2- 2]-pathway
(Scheme 1) for this titanium system due to 2-methyl inhibition in
allyl transfer?! While other methodologies exist for amine allyla-
tion,2 the flexibility of these mechanisms potentially opens new
avenues useful for organic synthesis.
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